[⁸⁹Zr]Df-crefmirlimab PET/CT imaging to assess the *in vivo* biodistribution of CD8⁺ T-cells in hospitalized COVID-19 patients

Ilse Kouijzer¹, Steffie Peters², Daphne Lobeek², Michel de Groot², Frank van de Veerdonk¹, Mihai Netea¹, Mathias Prokop², Hans Koenen³, Erik Aarntzen²

¹Department of Internal Medicine, ²Department of Medical Imaging, ³Department of Tumor Immunology, Radboud university medical centre Nijmegen, The Netherlands

Introduction

The initial site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encounter is the mucosa of the upper respiratory tract [1], from where it may spread to the lower respiratory tract and eventually distant organ sites [2]. Early recognition and clearance of the virus by the adaptive immune system in the mucosa of the URT is crucial to control viral load [3] and avoid tissue

Patient characteristics

		TAN001	TAN002	TAN003
age	years	89	83	79
sexe	m/f	m	m	m
co-morbidities		COPD, cardio-vasc	T2D, HT, chronic ITP	COPD
onset of symptoms	days	10	2	4
admission duration	days	22	8	6
vaccination status		2x, plus booster	2x, plus booster	not vaccinated
SARS-CoV2 variant		delta	delta	delta
treatment		dexamethasone 6mg	IVIG 1g, platelet infusion	prednison 30mg
SaO ₂	%	90, with 4L oxygen	96, w/o oxygen	94, w/o oxygen
C-reactive protein	mg/L	81	70	17
lymphocyte count	x 10 ⁹ /L	0.22	1.34	0.44

destruction during later stages of infection [4]. In response to the continuously exposition to inhaled pathogens, mucosal immunity in the respiratory tract has developed into a complex system that requires response of both local and systemic lymphoid compartments [5].

This case series describes the *in vivo* distribution of CD8+ T-cells in patients during active SARS-CoV-2 infection using PET imaging

Methods

This is a prospective, observational non-randomized pilot study in hospitalized patients of >50 years with

Results

1 tracer uptake in nasal mucosa correlates with higher expression of mucosa-homing recepter CD196 (CCR6)

Conclusion

Imaging CD8+ T-cells in hospitalized COVID-19 patients

T-cell distribution CD8+ reveals distinct patterns of during underscores the course of disease and importance of early local viral control in the upper respiratory tract.

This case series highlights PET imaging with immune cell specific tracers as a potential imaging biomarker complementing immunological assays with spatial and dynamic data on CD8+ T-cell behavior in vivo.

bloodpool

Zou et al., SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med, 2020.

- Gupta et al., Extrapulmonary manifestations of COVID-19. Nat Med, 2020.
- Roukens et al., Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8(+) T cell responses following COVID-19. Nat Immunol, 2022.
- Melms et al., A molecular single-cell lung atlas of lethal COVID-19. Nature, 2021.
- Mettelman et al., *Mucosal immune responses to infection and vaccination in the respiratory tract.* Immunity, 2022.

Radboudumc

left hilair LN

LN

LN 1

mediastina

LN 2