

⁸⁹Zr-Df-IAB2M Minibody Imaging In Patients With Prostate Cancer: **Biodistribution, Kinetics, Lesion Uptake And Organ Dosimetry**

Neeta Pandit-Taskar¹ MD, Joseph O'Donoghue¹ PhD, Serge Lyashchenko¹ Pharm.D, Shutian Ruan ¹ PhD, Jorge A. Carrasquillo¹ MD, Jason S. Lewis¹, PhD, Jennifer Keppler², Anna M. Wu², Wolfgang A. Weber¹, Howard I. Scher¹, Steven M. Larson¹, Michael J. Morris¹ ¹Memorial Sloan Kettering Cancer Center, New York, NY, ²ImaginAb Inc., Inglewood, CA.

Anti PSMA Minibody: IAB2M

The minibody ("Mb"), IAB2M is an optimally engineered 80 kDa anti PSMA humanized Mb dimer which each monomer is composed of an single chain variable fragment, scFv (V_{μ} - V_{μ}) linked to only the C₁3 domain.

⁸⁹Zr-Df-IAB2M, is the anti-PSMA Mb conjugated with desferrioxamine (Df) and radiolabeled with ⁸⁹Zr for imaging Prostate cancer

Imaging advantages:

Faster clearance; high T/BG ratio by 48 h and earlier imaging compared to full antibody

Objectives

Primary Endpoints

- To determine the safety, pharmacokinetics (PK) and biodistribution of ⁸⁹Zr-Df-IAB2M PET imaging
- To determine the ability of ⁸⁹Zr-Df-IAB2M PET imaging to detect known sites of disease

Secondary Endpoints

- Biopsy correlation of the ⁸⁹Zr-Df-IAB2M PET image lesions
- To compare FDG PET with ⁸⁹Zr-Df-IAB2M PET tumor uptake

Subject Inclusion Criteria

- Histologically confirmed prostate cancer
- Patients with progressive disease by Imaging or biochemical progression
- Measurable disease by CT, bone scan, or MRI that are consistent with disease
- KPS 60 or higher

Patient Demographics					
Characteristic (n = 18)	No. (%)	Median (Range)			
Age, years		68 (54-86)			
Gleason score		7 (6-9)			
KPS, %		90 (70-90)			
Disease Stage					
Castration-Resistant Metastatic	9 (50%)				
Non-Castrate Metastatic	9 (50%)				
PSA, ng/mL		14.7 (0.2-153.2)			

Methods

• Administration:

- Total of 10/20/50 mg of IAB2M minibody
- 5mCi of ⁸⁹Zr in 1-3mg of IAB2M minibody injected over 5-10 minutes.
- Serial blood samples: Pre-injection, 5, 15, 30, 60, and 120 to 240 minutes PI, and a sample at each subsequent day of imaging
- Whole body counts: Pre and post void; repeat at each subsequent time point.
- Scans: 10 mA CT scans on ³/₄ imaging and 80 mA CT scan on day 3 (48hr); acquisition 5-7 min/FOV

Results: Clearance of ⁸⁹Zr-Df-IAB2M

Pharmacokinetics

	Cohort I mean (range)	Cohort II mean (range)	Cohort III mean (range)
Blood Clearance (h) Effective $T_{1/2\alpha}$:	3 .3 (1.2 – 5.7)	5.1(1.9 - 8.0)	6.0(2.2 - 8.9)
Τ _{1/2β} :	20 (17-27)	23(19-27)	28(25-32)
Blood Clearance (h) Biologic T _{1/2α} :	3.4(1.2 - 6.2)	5.5 (2.0 – 8.9)	6.6(2.2 - 10.1)
Τ _{1/2β} :	28 (22-41)	32(24-41)	45(36-55)
Whole Body Clearance (h) effective	52(47 – 60)	58(53 – 65)	60(57 – 67)
Whole Body Clearance (h) Biological	166(119 – 257)	241(165 – 365)	267(211 – 450)
AUC (%ID h/L)	797± 216	1059 ± 307	1257 ± 130
Clearance (L/h)	0.133±0.034	0.103±0.038	0.080 ± 0.009

Estimated Absorbed Dose (cGy/mCi) Mean ± SD					
	Cohort-I	Cohort-II	Cohort-III		
Liver	6.3 ± 0.9	6.8 ± 1.2	5.4 ± 0.9		
Kidney	4.8 ± 0.9	5.7 ± 1.1	4.6 ± 0.7		
Red Marrow	1.07 ± 0.13	1.22 ± 0.25	1.25 ± 0.13		
Effective Dose (rem/mCi)	1.48 ± 0.19	1.59 ± 0.28	1.52 ± 0.15		

Organ SUV Cohorts 1, 2, 3

SUVLBM (mean± SD(Range)	Cohort I 48h	Cohort II 48h	Cohort III 48 h	Cohort III 72-120 h	Imaging/Biopsy Concordance (5 Bone and 8 Soft-Tissue Biopsies)				
Bone	15.1 ± 9.4 (9.3-42.1) N = 13	10.7 ± 7.5 (2.5-19.6) N = 9	7.0 ± 3.8 (2.9-10.3) N= 3	8.5 ± 3.7 (5.4 -12.6) N =3	Imaging Results	FDG +	FDG -	⁸⁹ Zr-Df- IAB2M +	I ⁸⁹ Zr-D IAB2M
Soft	6.1 ± 3.3	8.0 ± 3.9	0 ± 3.9 3.9 ± 2.0 5.2 ± 2.2	5.2 ± 2.2	Biopsy +	9	2	11	0
Tissue	Cont (2.7-14.6) (1.6-12.8) (0.7-8.2) (1.5-9.4) Tissue N = 14 N=8 N=17 N=17	(1.5-9.4)	Biopsy -	0	2	1	1		
		IN-17	Concordance	11/13 (85%)		12/13 (92%)			

Results (2)

• Bone or soft tissue/node lesions seen in 17/18 patients • 1 pt with negative scan had bone lesion on NaF-

Neg on path

- Bone lesions: Seen in 9 pts by ⁸⁹Zr-Df-IAB2M imaging (Bone scan + in 9 pts and FDG + in 6 pts). 2 pt showed bone uptake otherwise not prior known.
- 1 pt with conventional imaging (CI) + ⁸⁹Zr-Df-IAB2M was negative on pathology

• At least one or more lesions seen in 7 pts (5 with >5 lesions) for bone disease

- Nodal/soft tissue lesions seen in 14 pts (CI + in 13 pts)
- 1 pt was CI + ⁸⁹Zr-Df-IAB2M ; 2 patients were CI -⁸⁹Zr-Df-IAB2M+

Conclusions

- Favorable kinetics and distribution with minimal differences at the higher minibody dose
- Lesion detection seen at all minibody dose levels
- Lesions detection with high contrast possible at 48 h P.i.
- ⁸⁹Zr-Df-IAB2M imaging shows targeting of both bone and soft tissue lesions
- ⁸⁹Zr-Df-IAB2M imaging in larger patient population is underway

References

- Viola-Villegas NT, Sevak KK, Carlin SD, Doran MG, Evans HW, Bartlett DW, Wu AM, Lewis JS. Noninvasive Imaging of PSMA in Prostate Tumors with (89)Zr-Labeled huJ591 Engineered Antibody Fragments: The Faster Alternatives. Mol Pharm. 2014 May 6.
- Holland, J. P.; Divilov, V.; Bander, N. H.; Smith-Jones, P. M.; Larson, S. M.; Lewis, J. S.89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo J. Nucl. Med. 2010, 51 (8) 1293-300
- Pandit-Taskar, N., J. A. O'Donoghue, et al. (2008). "Antibody mass escalation study in patients with castrationresistant prostate cancer using (111)In-J591: Lesion detectability and dosimetric projections for (90)Y Radioimmunotherapy." Journal of Nuclear Medicine 49(7): 1066-1074.
- Michael J. Morris, Neeta Pandit-Taskar et al. Phase I trial of zirconium 89 (Zr89) radiolabeled J591 in
- metastatic castration-resistant prostate cancer (mCRPC).. J Clin Oncol 31, 2013 (suppl 6; abstr 31) 2013. Pandit-Taskar, N, O'Donoghue J et al. 89Zr J591 immunoPET imaging in patients with prostate cancer. J Nucl Med 2013; 54 (Supplement 2):287 2013.

Research Support: ImaginAb, Inc.; DOD Clinical Consortium. Award Grant # PC071610